一 关于JavaScript
JavaScript是一门单线程语言,在最新的HTML5中提出了Web-Worker,但JavaScript是单线程这一核心仍未改变。所以一切JavaScript版的”多线程”都是用单线程模拟出来的。
二 JavaScript的事件循环
既然JS是单线程,就像只有一个窗口的银行,客户需要排队一个一个办理业务,同理JS任务也要一个一个顺序执行。如果一个任务耗时过长,那么后一个任务也必须等着。那么问题来了,假如我想浏览新闻,但是新闻包含的超清图片加载很慢,难道网页要一直卡着直到图片完全显示出来?因此,可以将任务分为两类来解决问题:
- 同步任务
- 异步任务
当打开网站时,网页的渲染过程就是一大堆同步任务,比如页面骨架和页面元素的渲染。而像加载图片音乐之类占用资源大耗时久的任务,就是异步任务。
同步和异步任务分别进入不同的执行”场所”,同步的进入主线程,异步的进入Event Table并注册函数。
当指定的事情完成时,Event Table会将这个函数移入Event Queue。
主线程内的任务执行完毕为空,会去Event Queue读取对应的函数,进入主线程执行。
上述过程会不断重复,也就是常说的Event Loop(事件循环)。
那如何判断主线程执行栈是否为空?
JS引擎中存在monitoring process进程,它会持续不断的检查主线程执行栈是否为空,一旦为空,就会去Event Queue那里检查是否有等待被调用的函数。
例如:
1 | let data = []; |
上面是一段简易的ajax请求代码:
- ajax进入Event Table,注册回调函数success。
- 执行console.log(‘代码执行结束’)。
- ajax事件完成,回调函数success进入Event Queue。
- 主线程从Event Queue读取回调函数success并执行。
三 setTimeout函数
setTimeout是异步的
举例:
1 | setTimeout(() => { |
发现执行Task()的时间元超过3秒。为什么呢?
首先上面的代码执行过程
- task()进入Event Table并注册,计时开始。
- 执行sleep函数,很慢,非常慢,计时仍在继续。
- 3秒到了,计时事件timeout完成,task()进入Event Queue,但是sleep还没执行完,只好等着。
- sleep终于执行完了,task()终于从Event Queue进入了主线程执行。
上述的流程走完,可以知道setTimeout这个函数,是经过指定时间后,把要执行的任务(本例中为task())加入到Event Queue中,又因为是单线程任务要一个一个执行,如果前面的任务需要的时间太久,那么只能等着,导致真正的延迟时间远远大于3秒。
补充:
setTimeout(fn,0)的含义是,指定某个任务在主线程最早可得的空闲时间执行,意思就是不用再等多少秒了,只要主线程执行栈内的同步任务全部执行完成,栈为空就马上执行
四 Promise和process.nextTick(callback)
首先我们可以继续将任务细分
- macro-task(宏任务):包括整体代码script,setTimeout,setInterval
- micro-task(微任务):Promise,process.nextTick
不同类型的任务会进入对应的Event Queue,比如setTimeout和setInterval会进入相同的Event Queue
1 | setTimeout(function() { |
- 这段代码作为宏任务,进入主线程。
- 先遇到setTimeout,那么将其回调函数注册后分发到宏任务Event Queue。(注册过程与上同,下文不再描述)
- 接下来遇到了Promise,new Promise立即执行,then函数分发到微任务Event Queue。
- 遇到console.log(),立即执行。
- 整体代码script作为第一个宏任务执行结束,看看有哪些微任务?我们发现了then在微任务Event Queue里面,执行。
- 第一轮事件循环结束了,我们开始第二轮循环,当然要从宏任务Event Queue开始。我们发现了宏任务Event Queue中setTimeout对应的回调函数,立即执行。
- 结束。
接下来这段代码更具有典型性
1 | console.log('1'); |
第一轮事件循环流程分析如下:
- 整体script作为第一个宏任务进入主线程,遇到console.log,输出1。
- 遇到setTimeout,其回调函数被分发到宏任务Event Queue中。我们暂且记为setTimeout1。
- 遇到process.nextTick(),其回调函数被分发到微任务Event Queue中。我们记为process1。
- 遇到Promise,new Promise直接执行,输出7。then被分发到微任务Event Queue中。我们记为then1。
- 又遇到了setTimeout,其回调函数被分发到宏任务Event Queue中,我们记为setTimeout2。
上表是第一轮事件循环宏任务结束时各Event Queue的情况,此时已经输出了1和7。
我们发现了process1和then1两个微任务。
执行process1,输出6。
执行then1,输出8。
第一轮事件循环正式结束,这一轮的结果是输出1,7,6,8。那么第二轮时间循环从setTimeout1宏任务开始:
首先输出2。接下来遇到了process.nextTick(),同样将其分发到微任务Event Queue中,记为process2。new Promise立即执行输出4,then也分发到微任务Event Queue中,记为then2。
- 第二轮事件循环宏任务结束,我们发现有process2和then2两个微任务可以执行。
- 输出3。
- 输出5。
- 第二轮事件循环结束,第二轮输出2,4,3,5。
- 第三轮事件循环开始,此时只剩setTimeout2了,执行。
- 直接输出9。
- 将process.nextTick()分发到微任务Event Queue中。记为process3。
- 直接执行new Promise,输出11。
- 将then分发到微任务Event Queue中,记为then3。
第三轮事件循环宏任务执行结束,执行两个微任务process3和then3。
- 输出10。
- 输出12。
- 第三轮事件循环结束,第三轮输出9,11,10,12。
整段代码,共进行了三次事件循环,完整的输出为1,7,6,8,2,4,3,5,9,11,10,12。(浏览器环境)
评论加载中